CONIC SECTIONS

General comments

The conic sections are two-dimensional (flat) figures. Therefore, assume that all descriptions are for a plane.

In each of the following, the figure is in standard position. To obtain the general equation, replace x by x -h and replace y by y -k.

Circle

Definition: A circle consists of all points that are a given distance from some fixed point .

Equation: $\quad x^{2}+y^{2}=r^{2}$
Note: A circle is a special case of an ellipse where $a=b=r$.

```
center at (0,0)
r = radius
eccentricity =e =0
```


Parabola

Definition: A parabola is the set of all points that are equidistant from a fixed line (directrix) and a fixed point (focus) not on the line.

$\begin{array}{lll}\text { Equations: } & x^{2}=4 p y & \text { (opens up) } \\ & x^{2}=-4 p y & \text { (opens down) }\end{array}$

$$
\begin{array}{ll}
y^{2}=4 p x & \text { (opens right) } \\
y^{2}=-4 p x & \text { (opens left) }
\end{array}
$$

vertex at $(0,0)$
$p=$ distance between focus and vertex $=$ distance between vertex and directrix

Ellipse

Definition: An ellipse is the set of all points the sum of whose distances from two distinct fixed points (foci) is a constant.

Equations: $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
center at $(0,0)$
$a=1 / 2$ major axis
$b=1 / 2$ minor axis
$c=$ distance from center to focus

$$
\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1
$$

$$
\text { eccentricity }=\mathrm{e}=c / a \text { and } 0<\mathrm{e}<1
$$

$$
c^{2}=a^{2}-b^{2}
$$

Hyperbola

Definition: A hyperbola is the set of all points the difference of whose distances from two distinct fixed points (foci) is constant.

Equations: $\quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
center at $(0,0)$
$c=$ distance between center and focus
$\mathrm{a}=$ distance between center and vertex transverse axis $=2 \mathrm{a}$

$$
\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1
$$

$$
b^{2}=c^{2}-a^{2}
$$

